
Abstract. Higher-order Runge-Kutta (RK) algorithms
employing local truncation error (LTE) estimates have
had very limited success in solving sti� di�erential
equations. These LTEs do not recognize sti�ness until
the region of instability has been crossed after which no
correction is possible. A new technique has been
designed, using the local sti�ness function (LSF), which
can detect sti�ness very early before instability occurs.
The LSF is a normalized dimensionless ratio which is
essentially based on the product of the step size and the
geometric mean of all the slopes. It is exceedingly
sensitive to the onset of sti�ness. Together, the LSF and
the LTE form a complementary pair which can coop-
erate to help solve some mildly sti� equations which
were previously intractable to RK algorithms alone.
Examples are given of implementation and LSF perfor-
mance.
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1 Introduction

Runge-Kutta (RK) algorithms have always been con-
sidered superb tools for the numerical integration of
ordinary di�erential equations (ODEs). Their limited
ability to handle sti� ODEs has enabled other methods,
such as Gear's predictor-corrector [1] and Milne's
backward di�erences [2], to supersede them. However,
the fact that RKs are self-starting, easy to program, and
show extreme accuracy and versatility in non-sti�
problems has led to their continuous analysis and use
in mathematical research. One of the most exciting
developments in RK usage has been the discovery that
by judicious rearrangement of interim values of the RK
predictor one can obtain a second predictor of one order
less. The two equations are generally referred to as an
RK pair. Fehlberg [3] was among the ®rst to suggest on
theoretical grounds that the di�erence between the two

predictors would be directly proportional to the local
truncation error (LTE). The unusual success of the
Fehlberg approach was addressed in the popular text by
Forsythe [4], and cited as the ``state of the art'' of RK
code. The LTE is then used as a test to see whether a step
has been successful, and if not, the step size is reduced
(usually halved) until the LTE passes the tolerance
requirement. The beauty of the RK pair is that it
requires no extra function evaluations, which is the most
time consuming aspect of all ODE solvers. This
breakthrough initiated a search for RK algorithms of
higher and higher order and better error estimates.

Shampine [5] was convinced that a high-order RK
pair would be capable of solving sti� ODEs. This gave
Prince and Dormand [6±8] and Dormand et al. [8] the
motivation to compute some RK pairs of fairly high
seventh- and eighth-order magnitude. With so many new
algorithms available it was necessary to systematically
quantify some of these results. Some experimental tests
were devised [9] to determine the actual ``working order''
of the algorithm, which gave its intrinsic accuracy, and
then to examine the integrity of the LTE predictor. In an
RK algorithm the LTE is proportional to hr, where h is
the step-size and r is the order of the algorithm. The
order is considered to be the number of terms of a
Taylor series approximated, or the number of function
evaluations required to take one step. However this is
often misleading. By taking a known problem and cal-
culating the LTE exactly for di�erent step sizes, one can
determine the experimental value of r, the ``working
order'' of the algorithm. This number is quite important
since halving the step size reduces the LTE by a factor of
2r. It soon became apparent that the RK pair worked
better as a team, not converging or diverging as the
problem evolved, otherwise the most accurate RK
algorithm would still perform poorly overall. The best
RK pair by all statistical measures appeared to be the
Butcher algorithm [10] and an error estimate devised by
this author which is shown in Table 1. The RK-Butcher
algorithm is nominally considered sixth order since it
requires six function evaluations, but in actual practice
the ``working order'' is closer to ®ve but still exceeds all
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the other algorithms examined including the RK-Fehl-
berg.

MIDAS [11, 12] is a FORTRAN computer program
which was intended to be the very best ODE solver using
a standard RK algorithm. It has been constantly re®ned
to re¯ect every nuance of computer logic and designed to
give the very best results possible. It is presently armed
with the Butcher pair as the sole integrator. The con-
struction of MIDAS follows that of DSS/2 developed by
Schiesser [13] in which the speci®c problem is entered as
a FORTRAN subroutine. Techniques were developed to
take advantage of the extreme accuracy of the RK pair
to select the correct step size immediately without con-
stant halving, and to double the step size when condi-
tions permit. MIDAS incorporates the novel ``railroad''
step-size control (Table 2) which guarantees that every
subinterval will end on a print boundary exactly, and
that no subinterval has an unusual length. For RKs the
latter is exceedingly important since step size is a factor
in overall accuracy. In MIDAS, step size is totally ¯ex-
ible and completely under program control. Table 2
shows that halving the step size is always allowed, while
doubling the step size is allowed only on odd intervals. A
counter allows doubling only on completion of NI/2
successful steps in the non-sti� mode, where NI is the
number of subintervals in one print interval (PI). This

railroad mechanism eliminates many thousands of
FORTRAN statements to determine whether the step
has crossed the PI boundary. Equally important is the
fact that regardless of the number of subintervals which
may be in the thousands, at the end of each step the PI is
incremented by one PI unit and not by the sum of the
subinterval steps which reduces the enormous problem
of accumulated round-o� error. In addition, since most
of the step size bookkeeping is in the integer mode, it has
made MIDAS one of the fastest and most accurate of all
standard RK codes. The most surprising result occurred
when it was discovered that MIDAS could solve the
Edelson ¯are simulation [14] with ease at the time this
problem was considered a very di�cult benchmark test
of all ODE solvers.

One of the di�culties of all RK algorithms is that
they tend to explode when tackling sti� ODEs. There are
many theoretical de®nitions of sti�ness [5]. For our
purposes we will consider two categories. The ®rst oc-
curs when the curvature of the problem becomes ex-
treme. The error term of the RK pair follows the same
path as the main predictor and reports an acceptable
error while the RK pair are both far from the true value.
This condition worsens while the user is totally unaware
that the algorithm is reporting garbage. This problem
often occurs in coupled ODEs where the equations have
drastically di�erent time constants. The step size cannot
satisfy all the equations simultaneously. Such problems
are exceedingly di�cult for any type of algorithm. The
Edelson ¯are problem falls in this category. The second
type of sti�ness is extremely devious. All ODEs have a
general solution and an in®nite number of particular
solutions depending on the initial conditions. When
small round-o� and truncation errors begin to accu-
mulate they act as if the initial conditions have been
changed and now parasitic terms, particularly expo-
nentials often appear as if by magic. Again, the problem
will explode for no apparent reason. While time constant
problems are usually evident beforehand, it is often

Table 1. RK-Butcher algorithm in equation form

K1 � hF �Xn; Yn�
K2 � hF �Xn � h=4; Yn �K1=4�
K3 � hF �Xn � h=4; Yn �K1=8�K2=8�
K4 � hF �Xn � h=2; Yn ÿK2=2�K3�
K5 � hF �Xn � 3h=4; Yn � 3K1=16� 9K4=16�
K6 � hF �Xn � h; Yn ÿ 3K1=7� 2K2=7

� 12K3=7ÿ 12K4=7� 8K5=7�
Yn�1 � Yn � �7K1� 32K3� 12K4� 32K5� 7K6�=90
Y �n�1 � Yn � �K1� 4K4�K6�=6
LTE � Yn�1 ÿ Y �n�1

Halving on any interval: NI = 2*NI
IST = 2*K)1

Doubling only on an odd interval: NI = NI/2
IST = (K+1)/2

Step size: h = PI/NI
Loop: DO ( ) K = IST, NI (K = step index)

Table 2. Railroad mechanism for step size control

216



impossible to anticipate hidden parasitic terms. Some
harmless looking equations are often killer problems for
RK algorithms in general. This disability arising from
sti�ness is what keeps many researchers looking for a
still higher-order RK pair that may be immune from this
disease.

In this paper we present a new approach, that of
detecting the onset of sti�ness very early while the al-
gorithm still has enough stability to deal with it. The
sti�ness detector is a type of error function which is
independent of the RK algorithm itself and does nothing
else but put up a warning ¯ag that sti�ness has been
detected.

2 Method

We assume that when a problem is ®rst initialized and the deriva-
tives evaluated for the ®rst time, the problem is not yet sti�.
Generally the ®rst few steps of any problem are not at all sti�. This
fact is utilized by most of the sti� ODE solvers which use some type
of simple RK to calculate the initial values to get the system started.
If we allow the PI to represent the size of the ®rst RK step, DY to
represent the derivatives, and i the index over all equations, we can
then write a function:

HSTD � PI � SQRT
X
�DYi�2�

h i
:

HSTD can be called a ``characteristic length'' and represents the
largest allowable step size for an acceptable solution of any prob-
lem sti� or not. The user has the obligation to select a value for PI
which is appropriate to the problem and not excessive. The pro-
gram will print out all values at each PI boundary. HSTD is only
calculated once at the very beginning of the problem and maintains
a constant value throughout. On the chance that HSTD is zero
(very unlikely), it can be set to one with no change of e�ect. As
soon as the RK begins to advance we calculate:

LSF � h � SQRT
X
�DYi�2�

h i�
HSTD ;

where h is the present step size and LSF is the local sti�ness function,
which is a dimensionless ratio. Essentially, the LSF warns us when
the step size h is perceived to be too large for the system of equa-
tions, hence the designation of HSTD as a characteristic length.

The LSF function is based closely on the work of Shampine and
Gordon [15] who stipulated that the step size and curvature are
linked together by the stability of the problem, with the proviso
that the step size and curvature be inversely related. In e�ect, we
took Shampine's verbal conjecture and transformed it into the
closest quantitative mathematical function we could devise. The
assumption is that if we start in a region of stability the LSF will
warn us very early if we are leaving that zone. As we shall see, the
LSF handles that job remarkably well. The form of the function
guarantees that the LSF will be a real (not integer) positive number
and that it will increase as the problem increases in sti�ness. The
LSF function is normalized so that it becomes a relative value
which makes it general enough to be applicable to any problem of
any number of equations. The LSF is very sensitive to curvature
since it is the geometric mean of all the slopes and in¯uenced
mainly by the steepest values. It is important to note that the LSF is
not an error estimate in the usual sense, it detects sti�ness only and

is used to keep the problem in the stable region where the RK pair
is still functional.

We can examine the following empirical heuristic Table 3.
With this information it is possible to ward o� the oncoming

sti�ness, but drastic methods must be taken early if the problem is
to be solved. The simplest approach is to reduce the step size pre-
cipitously without interfering with the railroad mechanism. This
can be achieved in an indirect manner. Let TOL be the user spec-
i®ed error (absolute or relative) and LTE the estimate of the RK
pair. We can then use the following action to force the algorithm
into the sti� mode:

The point of Table 4 is that TOL still plays a strong role in
determining overall accuracy. TOL is decreased enormously which
in turn decreases step size. Once the sti�ness is abated, TOL can be
reset to its initial value and the problem reset to the non-sti� mode.
One of the most important constructs of the MIDAS code is the
overall feedback between the LTE estimate, step size, TOL, and the
LSF function. Setting TOL to a small value pushes the algorithm
severely as seen below. The following piece of FORTRAN code
determines the step size both in the sti� and non-sti� modes. This
code brings the step size to the correct value without constant
halving and testing. It also greatly reduces step size oscillation.
Very little of the prior non-sti� program code need be altered to
include the LSF function. It should be very easy to insert in any
code without rewriting the entire program. Note that the following
code still implements the railroad mechanism of Table 2. Here PI is
divided into NI subintervals by the code below, and step size
h � PI/NI. Note also that integer arithmetic is used wherever
possible to speed processing.

c...Implementation of the railroad mechanism
c...This code determines number of subintervals NI
c...which determines step-size; h � PI/NI
c...IST and K are loop indices
c...NADJ is a temporary variable
c...Compare this code with diagram in Table 2

if(LTE .gt. TOL)then
nadj� 1
if(TOL.gt. 0.0)nadj� 1+dlog10(LTE/TOL)
nadj� 2**nadj
ni� ni*nadj
ist� 1+nadj*(k-1)

endif

When the LTE exceeds the allowed value of TOL the step size is
reduced, the problem is restarted from the last successful subin-
terval, and the LSF retested to see whether this new step size is
acceptable. As seen above, the use of the LSF function, which
a�ects only TOL, does not invalidate the use of the RK pair as they
mesh together very well. Later on, when the LSF is brought to a
small value the non-sti� mode can be re-invoked. With these re-
®nements, and by use of both the LSF and the RK pair, it has been
possible for MIDAS to solve a few sti� problems that were previ-
ously intractable by standard RK algorithms.

3 Problems

3.1 Example 1

The ®rst problem [2] has been selected to show how a
simple ODE can turn into a sti� one without any

Table 3. Empirical interpretation of LSF

LSF range Interpretation

0±1 Problem is not sti�, RK pair acceptable
1±5 Slightly sti�, results still acceptable
>5 Results may be unreliable

Table 4. Use of LSF to a�ect toletrance

LSF range Action

0.5±1.0 TOL = TOL � 1.0D-7
1.0±5.0 TOL = TOL � 1.0D-2
>5.0 TOL = TOL � 1.0D-2
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warning. This is a single ODE that is used to demon-
strate the RK code in the sti� and non-sti� modes.

The problem is: dY =dX � X � Y :
Let us choose Y �0� to be C ÿ 1 with C in the range of

0:0 < C < 0:8.
When C is 0.0 the solution is Y � ÿ�X � 1�, a simple

linear equation. However, as soon as C takes any other
value, even in®nitesimally di�erent from 0.0, the solu-
tion abruptly changes to Y � C � exp�X � ÿ �X � 1� and
a hidden exponential suddenly comes to life. So, if one
chooses C� 0, and round-o� and truncation errors oc-
cur, it may appear as if the initial conditions were
changed and an unanticipated exponential suddenly
appears. Since one does not usually know the analytic
solution in advance, such terms are usually referred to as
``parasitic''. We will run this problem ®ve times varying
C by an increment of 0.2 from 0.0 to 0.8, and let X run
from 0.0 to 5.0 with a step of 1.0. As this is only a
slightly sti� problem the output is not necessary since
MIDAS prints the analytic solution exactly within the
user speci®ed value of TOL. The purpose of this exercise
is to show the maximum values of the LSF in the non-
sti� and sti� modes. Table 5 shows how the LSF follows
the curvature exactly.

Although the LSF in this problem is rather large and
shows considerable sti�ness, the stability of MIDAS in
the non-sti� mode can still overcome these di�culties. In
the non-sti� mode the LSF function is ignored. As
shown in Figs. 1 and 2, both sets of LSF values follow
approximately the shape of the exponential which is the
basic cause of the sti�ness. When the parameter C is zero

the equation is a straight line and the LSF maximum
over the entire problem shows a correct zero value.
Clearly, this problem demonstrates that the LSF func-
tion and the MIDAS code performed as well as expec-
tation would permit. The only downside to this entire
procedure is the cost in derivative evaluations. In the
non-sti� mode the number of derivative calls summed
over all ®ve runs was 1,118, while in the sti� mode it
took 63,050. While this is a signi®cant increase, the time
factor was hardly noticeable on a 66 MHz PC. It took
only a second or so for the sti� problem to complete.

3.2 Example 2

The second problem is an unusually deceptive pair of
sti� ODEs which look harmless enough at ®rst glance,
but carry an enormous parasitic term ready to explode.
This exercise shows the great power and versatility of the
LSF function in a truly di�cult problem.

DY =DX � Z ;

DZ=DX � 3ÿ 2X 2 � 2Y ÿ Z ;

with 0 < X (step 1)<50. The analytical solution is rather
simple:

Y �anal� � X �X � 1� Y �o� � 0 TOL � �=ÿ 0:0001

Z�anal� � 2X � 1 Z�o� � 1 :

The general solution is:

Y �anal� � C � exp�X � � X �X � 1�
and

Z�anal� � C � exp�X � � 2X � 1 :

In this problem DZ=DX has the constant value 2.00
throughout the entire range of X, and any slight devia-
tion from that is strong evidence that the problem is
about to explode. The sums and di�erences in the
DZ=DX equation cause round-o� error to accumulate so
rapidly that the constant C in the general solution comes

Table 5. Variation of LSF in sti� and non-sti� modes

Run C Maximum LSF

Sti� mode OFF Sti� mode ON

1 0.0 0.00 0.00
2 0.2 35.85 0.78
3 0.4 97.27 0.92
4 0.6 220.11 1.40
5 0.8 588.62 3.76

Fig. 1. Plot of the local sti�ness function vs. the variable coe�cient
c with normal step size control (sti� mode o�)

Fig. 2. Plot of the local sti�ness function vs. the variable coe�cient
c with automatic rapid decrease in step size (sti� mode on)
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alive causing the two exponentials in Y and Z to accel-
erate each other. One can attribute the di�culty mainly
to round-o� and not algorithmic truncation error since
one can immediately see a di�erence in results if the
constants 2 and 3 in the DZ equation are set to single or
double precision. In Table 6 the output has been
abbreviated to every tenth point. Note that in the sti�
mode the maximum LSF over the entire output can be
held to 0.622 which allows for the exact analytical results
up to X � 50. Some years ago this problem was used to
test various RK algorithms on a large CDC 6600 com-
puter with 29 signi®cant digits which practically elimi-
nates round-o� error. Still, very few algorithms could get
past X � 10 before blowing up. Again in this work, the
only quantity which shows any extreme value is the
number of function calls, in this case over 103,000. Al-
though it is true that so many thousands of small steps
accumulate round-o� and truncation error so rapidly
that they defeat most RK algorithms, in this case it does
not happen. A probable explanation is that no matter
how many steps are taken, the railroad mechanism up-
dates the independent variable (in this case X ) by one PI
unit at the end of each successful step, keeping the
round-o� error in X constant regardless of the number
of subintervals. Since both parasitic terms are indepen-
dent of Y, of the form exp�X �, it takes much longer
before the problem explodes. One may consider this
particular example a severe test of all ODE solvers and
RK algorithms especially.

4 Conclusions

In summary, the LSF appears to be an e�cient and
useful concept. For example, it helps explain why the
Edelson ¯are problem was relatively easy to solve in the
non-sti� mode since the maximum LSF value is 0.997
over the entire range. Thus the problem is not sti� at all

to the RK-Butcher algorithm. It is our strong belief that
the inclusion of the LSF function can elevate the
performance of RK algorithms in general and improve
any other procedures which require advance warning of
the onset of sti�ness.
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Table 6. Output for pair of sti� ODEs: a

Run no. 1. Initial value independent variable = 0.000E+00; ®nal value independent variable = 5.000E+01. No. of equations = 2; print
interval = 1.000E+00; type of error... abs; error criterion = 1.000E-04; maximum interval ratio = 513

X Y Y-Anal Z Z-Anal DY DZ LSF

0.0 0.000 0.000 1.000 1.000 1.000 2.000 0.000
10.0 110.000 110.000 21.000 21.000 21.000 2.000 0.134
20.0 420.000 420.000 41.000 41.000 41.000 2.000 0.136
30.0 930.000 930.000 61.000 61.000 61.000 2.000 0.413
40.0 1640.000 1640.000 81.000 81.000 81.000 2.000 0.276
50.0 2550.000 2550.000 101.000 101.000 101.000 2.000 0.346

aSummary sti� option.....ON; maximum sti�ness =0.622; no. of derv. calls = 103317; end of run (1)
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